
Bruno Xavier Leitão

Web Templates Support in NCL Player

Dissertação de Mestrado

Dissertation presented to the Programa de Pós-graduação em
Informática da PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática.

Advisor: Prof. Sérgio Colcher

Rio de Janeiro
September 2019

DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



Bruno Xavier Leitão

Web Templates Support in NCL Player

Dissertation presented to the Programa de Pós-graduação em
Informática da PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática. Approved by the
Examination Committee.

Prof. Sérgio Colcher
Advisor

Departamento de Informática – PUC-Rio

Prof. Sérgio Colcher
Advisor

Departamento de Informática

Prof. Carlos de Salles Soares Neto
Universidade do Maranhão – UFMA

Prof. Carlos de Salles Soares Neto
Universidade do Maranhão

Prof. Noemi de la Rocque Rodriquez
Departamento de Informática – PUC-Rio

Prof. Noemi de la Rocque Rodriquez
Departamento de Informática

Álan Livio Vasconcelos Guedes
Pesquisador Autônomo

Rio de Janeiro, September 20th, 2019

DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



All rights reserved.

Bruno Xavier Leitão

The author is undergraduaded in Computer Engineering in
Pontifícia Universidade Católica do Rio de Janeiro, PUC-Rio,
in 2015.

Bibliographic data
Leitão, Bruno Xavier

Web Templates Support in NCL Player / Bruno Xavier
Leitão; advisor: Sérgio Colcher. – Rio de janeiro: PUC-Rio,
Departamento de Informática, 2019.

v., 55 f: il. ; 30 cm

Dissertação (mestrado) - Pontifícia Universidade Católica
do Rio de Janeiro, Departamento de Informática.

Inclui bibliografia

Ginga; NCL; Multimídia; Autoria baseada em Templates;
Reuso; Autoria Hipermidia I. Colcher, Sérgio. II. Pontifícia
Universidade Católica do Rio de Janeiro. Departamento de
Informática. III. Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



To my parents, for their unconditional support and encouragement that
helped me achieve this goal.

To my boring brother, for always stays at my side.
To my relatives, for their kind lover and preoccupation.

And to my grandparents Lourdinha and Francisco (in memoriam) ————-

DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



Acknowledgments

First of all, I would like to thank my advisor, Prof. Sérgio Colcher, for
always believe and for never give up on me after the difficulties I faced.

To my friends and colleagues from TeleMidia for the excellent talks, cakes
and coffee during the launch time, in special, to Álan for the discussions about
this work and for helping me out reviewing the text.

To all my relatives for being always on my side and cheer me up when I
needed. To my little brother, clonezinho André, for sharing all the moments,
the goods and the bad ones.

To my long-date friends, for helping me chill and distract me when I
requested. To my friends and professors from the gym to encourage me to
keep my physical health.

The study was financed in part by the Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



Abstract

Leitão, Bruno Xavier; Colcher, Sérgio (Advisor). Web Templates
Support in NCL Player. Rio de Janeiro, 2019. 55p. Dissertação
de mestrado – Departamento de Informática, Pontifícia Universi-
dade Católica do Rio de Janeiro.

Ginga middleware and NCL language are standards for multimedia
applications authoring for Digital TV. Some studies have indicated that
NCL language is highly verbose. Such a factor increases the possibility of
coding errors introduced by application authors. These mistakes can be
reduced by reusing repeated elements on the code. In the multimedia field,
is common to use templates to achieve such a goal. Templates describe a
family of logically structured documents. Template language insertion ends
up reducing the number of lines of codes written and thus make the final
document less error-prone. On the web, the scenario is common the template
usage in HTML development. In this scenario, developers commonly use
specific templates engines that can even run on the client-side, such as
Jinja2 and Mustache. This work aims at bringing web templates support
for the NCL development. By running on the client i.e., Ginga, developers
can provide adaptable template-based content to developed applications

Keywords
Ginga; NCL; Multimedia Template-oriented authoring; Reuse; Hyper-

media Authoring.

DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



Resumo

Leitão, Bruno Xavier; Colcher, Sérgio (orientador). Suporte a
Templates Web no Player NCL. Rio de Janeiro, 2019. 55p.
Dissertação de Mestrado – Departamento de Informática, Pontifícia
Universidade Católica do Rio de Janeiro.

O middleware Ginga e a linguagem NCL são padrões para autoria de
aplicações multimídia para TV Digital. Alguns estudos concluiram que a
linguagem NCL apresenta um alto grau de verbosidade. Tal fator aumenta
a possibilidade do autor da aplicação escrever um código errado. Uma
maneira para reduzir tais chances de erro consiste em reusar elementos
que se repetem na estrutura do código. Na literatura, dentro do campo
de multimídia, é comum usar templates pra tal finalidade. Templates
descrevem famílias de documentos com estrutura lógica em comum. No
contexto da web é comum a utilização de templates na criação de
páginas HTML. Nesse caso, os templates podem ser executados tanto no
lado cliente como no lado servidor. A proposta desse trabalho é trazer
linguagens de template web e suas ferramentas de execução (engines) para
o universo da TV Digital. A execução rodando no cliente (Ginga) permite
a seus desenvolvedores fornecerem applicação baseadas em templates com
conteúdo adaptável.

Palavras-chave
Ginga; NCL; Multimídia; Autoria baseada em Templates; Reuso; Autoria

Hipermidia

DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



Table of Contents

1 Introduction 13
1.1 Templates 14
1.2 Problem Definition 15
1.3 Objectives 17
1.4 Organization 17

2 Related Work 18
2.1 HTML Templates 18
2.2 NCL Templates 20
2.3 Discussion 22

3 NCL-formats tool 24
3.1 Supported Web Template Languages 24
3.2 Web-Template Processing Embedded in an NCL Document 25
3.3 Web-template Processing outside NCL document 27
3.4 Implementation Details 28

4 Web Templates Evaluation 30
4.1 Slideshow 32
4.2 Broadcast Additional Content 38
4.3 IBB Video Recommendation 43
4.4 Discussion 48

5 Final Remarks 51
5.1 Limitations and Future Work 53
5.2 Publications 53

DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



List of Figures

Figure 1.1 Template engines’ processing 14
Figure 1.2 Template processing on client and server 15
Figure 1.3 Intersection between NCL and HTML Template Devel-

opers 16

Figure 3.1 Template Processing through script languages 26
Figure 3.2 Extended Ginga Player architecture 28

Figure 4.1 Number of lines coded per file employing Jinja2 as
template language 34

Figure 4.2 Number of instructions typed per file employing Jinja2
as template language 35

Figure 4.3 Number of lines coded per file employing Mustache as
template language 37

Figure 4.4 Number of instructions typed per file employing Mus-
tache as template language 37

Figure 4.5 Additional content application screenshot 39
Figure 4.6 Number of lines coded per file employing Jinja2 as

template language 43
Figure 4.7 Number of instructions typed per file employing Jinja2

as template language 43
Figure 4.8 Video recommendation application screenshot 44
Figure 4.9 Video recommendation logic built through NCL contexts 45
Figure 4.10 Number of lines coded per file employing Jinja2 as

template language 47
Figure 4.11 Number of instructions typed per file employing Jinja2

as template language 47

DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



List of Tables

Table 2.1 Related work features summary 22

Table 4.1 Types of instructions on each language 31
Table 4.2 Jinja2 slideshow score summary 35
Table 4.3 Mustache slideshow score summary 38
Table 4.4 Additional content score summary 43
Table 4.5 Video recommendation score summary 48

DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



List of Abreviations

ABNT – Associação Brasileira de Normas Tecnicas
API – Application Programming Interface
CDN – Cognitive Dimensions of Notation
DTV – Digital TV
DOM – Document Object Model
eRuby – embedded Ruby
HTML – HyperText Markup Language
IBB – Integrated Broadcast-Broadband
IPTV – Internet Protocol Television
ITU – International Telecommunication Union
JNS – JSON NCL Script
JSON – JavaScript Object Notation
JSX – JavaScript XML
NCL – Nested Context Language
OAR – Over-the-air
SBTVD – The Brazilian Digital TV System
sNCL – simple NCL
STB – set-top box
SRT – SubRip Subtitle file
PHP – Hypertext Preprocessor
TAL – Template Authoring Tool
XML – Extensible Markup Language
XSLT – eXtensible Stylesheet Language Transformations

DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



Persistence is still the best way to achieve
something in life.

Unknown Author.

DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



1
Introduction

Digital TV (DTV) is an increment of traditional TV. In particular, it
offers, besides higher quality image and sound, the ability to interact with
the content using interactive applications running in the receiver device. This
characteristic contributes to a much better watching television experience [1].
To enable such applications to execute, DTV systems use a standardized mid-
dleware layer. This layer focuses on software interoperability between different
receivers to abstract different hardware and operating system configurations.
In other words, the same application will work if it is running on conventional
TV sets, high-definition devices, computers or cell phones from different ven-
dors.

The Brazilian Digital TV System (SBTVD) Forum proposed in 2006
the Ginga middleware [2] for authoring its interactive applications. The Ginga
main component is the Ginga-NCL subsystem. It supports the execution of
applications developed in the Nested Context Language (NCL) [3]. Today,
both Ginga and Ginga-NCL are ITU Recommendations for IPTV systems [4]
and are used in Terrestrial Digital TV in many countries of South America
and Africa.

NCL is based on XML1 and comprises a domain-specific language for
multimedia authoring. More precisely, it focuses on specifying multimedia ap-
plications with synchronized audiovisual media and key-based user interac-
tions. According to Soares et al. [5], however, the XML syntax is verbose
and error-prone. They highlighted, after conducting an usability analysis, that
programming in NCL may be a hard job as applications’ complexity increases.
Therefore, some work aims at supporting alternative formats (i.e., syntaxes)
for NCL, such as JNS [6] based on JSON (JavaScript Object Notation) [7] for-
mat. One may better support the development of NCL applications promoting
code reuse.

The code reuse technique is based on taking advantage of a prior coding
effort to reduce the amount of work to achieve a new accomplishment. It allows
previously tested code usage, avoiding repetition and, therefore, reducing
errors. In the multimedia field, it is common the use of templates to do so.

1https://www.w3.org/XML/

https://www.w3.org/XML/
DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



Chapter 1. Introduction 14

1.1
Templates

A document template describes a family of similar structured documents, i.e.,
applications. They are created by a template author and characterized for
having “blanks” that must be filled in with some content according to rules and
relationships. In general, these blanks are filled with information from another
document called padding created by the template user. Templates isolate logical
and structural information of a document from its presentation data, reducing
the amount of work and error that might come out.

The system responsible for processing templates is called a template
engine. It receives a Template document, described by some template language,
together with a Padding document, and processes them to fill in the gaps,
producing, as output, a new document in a final specific format. This output
file may be, then, rendered by a Multimedia Player. The Figure 1.1 shows the
common template engines’ processing.

Figure 1.1: Template engines’ processing

It is important to notice that this template engines’ processing is not tied
to happen in the same environment of the Multimedia Player. In this work,
we consider two terms to denote where this processing takes place. We call
server-side when the processing occurs before an application arrives at the
Player environment. In this case, the client only receives the final document
from a distribution channel. Differently, when processing runs at the client-
side, the Multimedia Player receives both the Template and the Padding
documents plus the Template Engine itself. To illustrate such difference, Figure
1.2 presents the template’s execution on both server- and client-side.

To run on the client-side the Template Engine must assure compatibility
with the multimedia player that will process the received information. In
other words, it should be implemented in a language understandable by the
multimedia player.

DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



Chapter 1. Introduction 15

Figure 1.2: Template processing on client and server

1.2
Problem Definition

Several works have been studying templates for NCL. Among then, we cite
LuaTPL [8] and Luar [9], which evaluates Lua scripts inside NCL documents
to generate more elaborated NCL constructs. Also, Moraes at. al [10] imple-
ments a Lua library that generates NCL documents called Lua2NCL. More-
over, Terças at. al. [11] proposes a markup language with a Lua-like syntax
called sNCL. Finally, [12] and [13] present XML-based template languages for
hypermedia documents Xtemplate and TAL (Template Authoring Language),
respectively.

Despite the aforementioned efforts, none of them obtained enough at-
tention from NCL developers community. Given this scenario, we propose the
following research question:

RQ1: How can we improve NCL development template usage?

To answer such a question, we take into account that, at the present
moment, there is a shortage of NCL programmers. Nowadays, many existing
NCL developers are actually experts that have a web background assigned to
collaborate on DTV application development.

Template languages for NCL and HTML (HyperText Markup Language)
emerged from the need of each respective community to focus on supporting
themselves. However, differently from the NCL development, template-based
applications on the web have gained more and more attention from its
developers’ community. We believe that bringing web template languages to

DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



Chapter 1. Introduction 16

the development of applications in NCL strengthen this existing intersection by
facilitating developers’ work. So, we are looking at a field with broad template
usage, the web. Figure 1.3 illustrates such an idea.

Figure 1.3: Intersection between NCL and HTML Template Developers

In the web scenario, we may cite template languages such as Jinja2 and
Mustache. They have simplistic syntax and they are widely adopted by the
web community and broadly used in frameworks. We also mention, XML-
based templates for web such as XSLT and webcomponents2. These languages
include relevant features such as inheritance and components (better discussed
in Section 2.3).

We argue that an option to improve NCL template usage (RQ1 ) is to
leverage the use of these web template-based languages in the NCL develop-
ment environment, exploring the natural intersection between NCL and web
developers.

Therefore, one of our objectives is to evaluate web templates usage in
NCL development.

Motivated by this context, we also define the following more specific
question:

RQ2: How can we support web templates processing in NCL devel-
opment?

Looking at the web field again, we can see several discussions regarding
which is the best place for template processing: on the client-side or the server-
side. However, in recent years, it has become increasingly common to run on the
client-side. That is because, on the server-side, the server generates a new page
for every interaction with a user. Each request has to travel all the way from
the client to the server. Then, this page should be returned to the user. Such

2http://www.webcomponents.org

http://www.webcomponents.org
DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



Chapter 1. Introduction 17

behavior can significantly increase the page loading time leading to latency
issues.

On the other hand, the client-side processing avoids latency issues. More
than that, it is not necessary to load all the page every time its content
changes. Therefore, we also propose the execution of template engines at player
environment i.e., client-side.

With web template language adoption, we aim at bringing its advan-
tages to NCL development and, by enabling client-side execution, we may
provide adaptable template-based NCL applications. This last case allows the
execution of template-based applications over an IBB (Integrated Broadcast-
Broadband) TV environment (better discussed in Chapter 4, Section 4.3).

1.3
Objectives

To summarize, this work addresses the following objectives:

1. Allow web template engines execute at Ginga (client-side in our
context);

2. To evaluate web templates usage in the development of applica-
tions in NCL. To do this, we develop representative use cases, evaluate
them and compare their susceptibility to errors against pure implemented
NCL documents.

1.4
Organization

The remaining of this document is organized as follows. Section 2 discusses
related work and compare them according to some features relevant to our
work. Section 3 proposes an approach to allow web template engine execution
on both server- and client-side. Then, section 4 presents an evaluation of
web templates usage in NCL by addressing some use cases. Finally, Section 5
discusses final remarks and the next steps.

DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



2
Related Work

The related work can be divided into two groups according to their
propose. The first group comprises those works targeting the HTML; and the
second, those developed for the NCL language.

2.1
HTML Templates

We organize related HTML templates into two groups. The first one focuses
on processing tags in the HTML document to fill with information. They are
XSLT and webcomponents.

XSLT (eXtensible Stylesheet Language Transformations) [14] is a lan-
guage for document transformations. It is more applied in XML-based for-
mat of HTML called XHTML1. Although it is a powerful transformation lan-
guage, creating transformations requires non-trivial programming skills and
deep knowledge on the target language semantics and structure. The transfor-
mations defined with XSLT are done in style sheets. One style sheet is specific
to a single transformation, not being possible to reuse it for the transformation
of compositions containing elements different from the ones it was designed for.
XSLT can operate over multiple input files in several distinct formats. The only
requirement is the input file looks like XML.

Web components2 allow developers to create new custom, reusable and
encapsulated HTML tags. It consists of a set of JavaScript APIs (Application
Programming Interface) that enables such tags creation. These news tags act as
components and widgets that will work across modern browsers. They accept
styling and are only rendered after being processed by the JavaScript code
of the template engine. By themselves, they are not powerful due to logical
structure limitations.

The second group aims at processing special syntax elements in the
HTML document and fill it with information. They are: Jinja2, Mustache and
React, and are described as follows.

1https://www.w3.org/TR/xhtml1/
2https://www.webcomponents.org/

https://www.w3.org/TR/xhtml1/
https://www.webcomponents.org/
DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



Chapter 2. Related Work 19

Jinja23 template language is one of the web’s most used template engines.
Its language is inspired by Django framework4 template system, however,
Jinja2 extends it with a more expressive language giving to template authors
a more powerful set of tools. It may be employed for both HTML and XML
formats. Jinja2 offers a complete toolset for handle templates i.e., provides
not only the semantic and syntax necessary to a language but an engine
as well. Such an engine is implemented in python, nonetheless, third-party
implementations supporting other programming languages might be found.
Among them, Lupa5 written in Lua.

Mustache6 is a logic-less template syntax. Such term comes out from
the fact that it has no “if” statements, “else” clauses, or “for” loops. Instead,
there are only tags. It works by expanding these tags in a template using
values provided in a hash or object. Such tags are replaced with a value, some
nothing, and others with a series of values. The language can be employed
in HTML, config files, source code—anything. And, since Mustache supports
various languages, we don’t need a separate template engine on the server- side.
It is easier for non-programmers to manage once their logic is hidden behind
tags. On the other hand, code became more difficult to read. Like Jinja2, it
is implemented in many languages (e.g. Python, JavaScript, Lua). Listing 2.1
illustrates a “Hello World” template on Mustache. From the example, it is
seen that Mustache template engine is embedded in the HTML document as
a script (line 3).� �

1 <html>
2 <head>
3 <script src="mustache.min.js"></script>
4 </head>
5 <body>
6 <div id="target">Loading...</div>
7 <script>
8 var template = document.getElementId().innerHTML();
9 Mustache.parse(template);

10 var rendered = Mustache.render(template, {name: "Luke"});
11 template.html(rendered);
12 </script>
13 <script id="template" type="x-tmpl-mustache">
14 Hello {{ name }}!
15 </script>
16 </body>
17 </html>� �

Listing 2.1: Mustache “Hello World” example

3https://github.com/pallets/jinja
4https://www.djangoproject.com/
5https://github.com/zhsso/lupa
6https://mustache.github.io/

https://github.com/pallets/jinja
https://www.djangoproject.com/
https://github.com/zhsso/lupa
https://mustache.github.io/
DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



Chapter 2. Related Work 20

React7 is a JavaScript library for building user interfaces on the web
that runs on client- and server-side. It is based on components concept. A
component is a self-contained element (a function or class in JavaScript) that
produces an output when rendered. They might include other components
to build more complex applications in React. Despite not being a template
language, React allows expressions through JSX8 (JavaScript XML), which
embed XML code inside JavaScript. Listing 2.2 illustrates a “Hello Word”
example. Similarly to Mustache, React is also embedded in the HTML code.� �

1 <html>
2 <head>
3 <meta charset="utf-8" />
4 <title>Hello React!</title>
5 <script src="https://unpkg.com/react@16/umd/react.development.

js"></script>
6 <script src="https://unpkg.com/react-dom@16/umd/react-dom.

development.js"></script>
7 <script src="https://unpkg.com/babel-standalone@6.26.0/babel.

js"></script>
8 </head>
9 <body>

10 <div id="root"></div>
11 <script type="text/babel">
12 ReactDOM.render(
13 <h1>Hello, world!</h1>,
14 document.getElementById(’root’)
15 );
16 </script>
17 </body>
18 </html>� �

Listing 2.2: React “Hello World” example

When running on the web, Mustache and React works differently from
Jinja2. Mustache and React load their engines as a script and use the DOM
(Document Object Model) API to edit the HTML document. The DOM
enables JavaScript code to access HTML elements as objects in a tree-based
data structure. This process corresponds to line 8 in Listing 2.1 and line 14
in Listing 2.2. On the other hand, Jinja2 loads the engine through importing
statements.

2.2
NCL Templates

This section details related work targeting templates in NCL. We grouped them
into three categories. The first category focuses on handling NCL documents

7https://reactjs.org/
8https://reactjs.org/docs/introducing-jsx.html

https://reactjs.org/
https://reactjs.org/docs/introducing-jsx.html
DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



Chapter 2. Related Work 21

with new markup elements that are processed and filled with information.
They are TAL and XTemplate (3.0).

TAL [13, 15] supports template specifications called incomplete hyper-
media compositions. TAL can define a set of documents that shares the same
composition structure. However, it does not allow to assign its components
information to the layout, nor does it provide any facility to create genre def-
initions of presentation characteristics. TAL owns template nesting, but its
interfaces are not well-defined for this nesting, then properties can be violated.

XTemplate (3.0) [12] targets families of documents written in NCL 3.0.
Unlike TAL, XTemplate 3.0 was developed to a specific target hypermedia
language. On the other hand, TAL can be processed together with a padding
document to generate applications in different target languages, depending
only on the specific processor used. XTemplate targets on easing the authoring
performed by experts. However, all XTemplate users need to have some
technical pre-requisites such as XPath and XSLT [11] knowledge, even if they
only need to instantiate composition templates. On the contrary, TAL has as
one of its goals the reduction for the need of experts. TAL avoids the use of
external notations different from those of the target-language conceptual model
and notations that are beyond the abstraction level (like XSLT processing
instructions of XTemplate 3.0 does).

The second group processes NCL documents with a special syntax to
fill with information. They are LuaTPL [8] and Luar [9], which evaluate Lua
scripts inside NCL documents to generate more elaborated NCL constructs.
LuaTPL is very limited in its capability and therefore, the development of
sophisticated templates becomes a very challenging task.

Luar implements embedded Lua snippets in the NCL document. In
Luar, used templates are indicated inside the padding and treated as a media
object, instead of a document. Luar came up with the template component
concept, that allows distinct templates combination to form more elaborated
applications. It defines two distinct processors: one for template documents
and another for applications.

Finally, the third group aims at processing a different language than NCL
to generate NCL documents. It comprises Lua2NCL only.

Lua2NCL [10] is a Lua framework. It builds NCL tags through Lua tables,
instead of XML, and then uses information on these tables to produce NCL
documents. In Lua2NCL, some original NCL tags are removed while others
become invisible to programmers.

DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



Chapter 2. Related Work 22

2.3
Discussion

To discuss the related work, we analyze them according to four characteristics,
summarized in Table 2.1:

– Control Structures Statements indicates if the work supports control
structures that change the template engine flow, such as loops and if-else
statements.

– Templates Inheritance Statements means the capability of a tem-
plate to inherit another. More precisely, one template acquires properties,
states, and variables from its parents;

– Components Statements indicates the support to components. Com-
ponents are independent elements with a self-contained structure that
may be assembled to build more complex applications;

– Template Engine Languages indicates the languages used to imple-
ment the engine.

Work Control Structures
Statements

Template
Inheritance
Statements

Components
Statements

Template Engine
Languages

XSLT
for-each

import9 5 Java, C, C++
if-else

webcomps. JavaScript 5 API10 JavaScript

React JavaScript 5 React.Component11 JavaScript

Jinja2
for-each

extends12 5 Python, JavaScript, Lua...
if-else

Mustache for-each partials13 5 Ruby, JavaScript, Lua...

LuaTPL Lua 5 5 Lua

Luar Lua 5 includeComponent14 Lua

Lua2NCL Lua 5 5 Lua

XTemplate for-each 5 5 Java

TAL for-each extends15 5 Lua

Table 2.1: Related work features summary

9https://www.w3schools.com/xml/ref_xsl_el_import.asp
10https://developer.mozilla.org/en-US/docs/Web/API/

CustomElementRegistry
11https://reactjs.org/docs/react-component.html
12https://jinja.palletsprojects.com/en/2.10.x/templates/

#template-inheritance
13https://mustache.github.io/mustache.5.html#Partials
14http://ginga.lavid.ufpb.br/projects/wiki/wiki/_Cria%C3%A7%C3%

A3o_de_aplica%C3%A7%C3%B5es_a_partir_de_templates_Luar
15[13]

https://www.w3schools.com/xml/ref_xsl_el_import.asp
https://developer.mozilla.org/en-US/docs/Web/API/CustomElementRegistry
https://developer.mozilla.org/en-US/docs/Web/API/CustomElementRegistry
https://reactjs.org/docs/react-component.html
https://jinja.palletsprojects.com/en/2.10.x/templates/#template-inheritance
https://jinja.palletsprojects.com/en/2.10.x/templates/#template-inheritance
https://mustache.github.io/mustache.5.html#Partials
http://ginga.lavid.ufpb.br/projects/wiki/wiki/_Cria%C3%A7%C3%A3o_de_aplica%C3%A7%C3%B5es_a_partir_de_templates_Luar
http://ginga.lavid.ufpb.br/projects/wiki/wiki/_Cria%C3%A7%C3%A3o_de_aplica%C3%A7%C3%B5es_a_partir_de_templates_Luar
DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



Chapter 2. Related Work 23

Regarding Control Structures, some works support them by enabling
developers to use its template engine language. It is the case of webcomponents
and React based on JavaScript; and LuaTPL, Luar and Lua2NCL build upon
Lua language.

Other works propose some syntax elements to iterate over collections
and evaluate conditions. In particular, Mustache has its own “for-each” syntax
(called “sections”), which index elements in the given padding document and
Jinja2 uses a Python-like syntax. Moreover, Mustache, XTemplate, and TAL
does not support “if-else” statements.

Usually, each work or supports inheritance or components statements.
On one hand, XSLT, Jinja2, Mustache and TAL implement some inheritance
statements. It happens mainly because they focus on creating a template for
the entire document. On the other hand, webcomponents, React and Luar
support components statements. Particularly, the first two uses JavaScript
language to create them by inserting in the HTML DOM their processed data.
The exceptions are LuaTPL, Lua2NCL and XTemplate which has no support
for these two mechanisms.

Regarding the Template Engine Language, some HTML works have
implementations in several languages. That happens because they can be
processed on the server-side and hence should support languages that work on
servers. XSLT, Jinja2 and Mustache are in this case. Jinja2 was originally coded
in python and Mustache in Ruby. Nowadays, Jinja2 is assisted by languages
like JavaScript and Lua, while Mustache is implemented in over 40 languages.

As one of our goals is to evaluate web-templates language to build
NCL applications, it is important to highlight differences between Jinja2
and Mustache. Jinja2 is a template engine, so it offers in the same package
a template language and a python-like API to process the padding data.
In counterpart, Mustache depends on third-part engines as it is a template
language specification only.

Concerning works targeting NCL, excluding Xtemplate, they are imple-
mented in Lua. In them, templates are processed before their arrival at Ginga.
Differently, from any other approach, we propose template processing at Ginga
(client-side), without changing NCL standardized syntax neither creating any
other language. More than that, our proposal consists of importing the appro-
priate engine and then process template documents using classes and methods
imported.

DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



3
NCL-formats tool

In order to improve the template usage in NCL, we define the objective of
Allow web template engines processing at Ginga. By doing this, we take
advantage of the intersection between NCL and web development. With this
perspective, we intend to bring web programmers and their knowledge to NCL
application’s development. In that sense, NCL application templates may be
built from web-template languages. The developer creates NCL applications
by simply passing data (padding document) to a web-template engine.

To enable such execution, we propose the NCL-formats1 tool. It aims at
assisting the development of NCL applications based on template languages,
especially those targeting the web. Nonetheless, it is important to highlight
that NCL-formats can handle a wide range of template languages.

The remaining of this chapter is organized to present NCL-formats. In
Section 3.1, we define which web-template language will be tested. Section
3.2 presents the most relevant execution configuration for NCL-formats while
Section 3.3 addresses others possible scenario. At last, Section 3.4 comments
about its implementation details.

3.1
Supported Web Template Languages

In the web context, it is recurrently necessary to take advantage of repetition
elements. One example is page headers that might be shown on several pages
across one website. So, a web programmer may opt to use a template to build
such headers. From this need, many template languages have been developed
and innumerable options are available.

To define our supported languages, we define the following requirements:

– license should not be proprietary;

– have a significant users base;

– support control structures;

– support template inheritance;

– be able to run on TVD environment and at Ginga.
1https://github.com/TeleMidia/ncl-formats

https://github.com/TeleMidia/ncl-formats
DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



Chapter 3. NCL-formats tool 25

A web-template language with a large number of developers goes to-
ward our proposal to RQ-1 How can we improve NCL development based on
templates? The option for a widespread language encourages developers to
implement applications for Ginga as well. Once this developer knows about
developing with web-templates language, he/she can easier migrate to the de-
velopment of NCL applications programming in the same language.

Control structures give more power to developers during coding by
allowing them to handle their codes’ behavior. In declarative languages, such
as NCL, developers type what “the code should do” in their applications.
Consequently, they cannot change their codes’ flow of control.

Template inheritance is a desirable feature because it allows developers
to spit their code in different parts. Their advantage is to provide templates
reuse. In this way, developers may change one child template for another and
still take advantage of the same base template.

Out of these five requirements, the most restrictive is the last one. In
practical terms, it implies that the language should have an implementation in
Lua. Such constraint eliminates a wide range of engines that targets languages
directly related to the web development environment, such as JavaScript and
PHP.

Based on these requirements, we chose initially to support Jinja2 and
Mustache web-template languages.

3.2
Web-Template Processing Embedded in an NCL Document

Embedding templates processing in the NCL document is the main execution
scenario for NCL-formats. It brings advantages compared to prepossessed
templates. For instance, it allows configuration at run-time. This possibility
gives more dynamism to templates. The use cases in Sections 4.2 and 4.3 from
Chapter 4 explores more about this.

By running template engine as a Lua Script, Ginga receives one single
NCL document responsible for setting up the environment. We call this NCL
document as configuration file. Note that for this scenario there must be a
mechanism to process the given data since the middleware can only handle
NCL documents.

On the web, browsers can only render JavaScript. Therefore, to process
templates documents in the client-side is it necessary an engine implemented
in JavaScript as well. A similar approach occurs with Ginga that adopts Lua
as its scripting language. For that reason, scripts in Lua has a straightforward
integration and that is reason behind our choice.

DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



Chapter 3. NCL-formats tool 26

Figure 3.1 below examples how the process works. Ginga middleware
receives the aforementioned NCL document with three pieces of information:
the template document; the padding; and the template engine, as properties
of a media object. This media object is the NCL-formats tool NCLua script.
The NCL-formats outputs an NCL document to be played as sooner as the
script signalizes its ending.

Figure 3.1: Template Processing through script languages

Listing 3.1 next details this NCL document. The NCL player starts the
Lua script with relevant information as a property of NCL-formats script.
The script processes the passed data to generate the final_document.ncl
NCL document. In the end, the script signalizes its ending to the configu-
ration file. Upon receiving this signal, the Ginga player starts to reproduce
final_documents.ncl. “

NCL-formats is a Lua script responsible for handle all the template
processing. In our approach, NCL-formats imports the engine and uses classes
and methods from it to manipulate the given data and process the template
document received.

DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



Chapter 3. NCL-formats tool 27

� �
1 <ncl>
2 <head>
3 ...
4 </head>
5 <body>
6 <port id="template-handler" component="template-engine"/>
7 <media id="template-engine" src="ncl-formats.lua">
8 <property name="type" value="jinja2"/>
9 <property name="template" value="slideShow_child.ncl.j2"/>

10 <property name="padding" value="padding.json"/>
11 <media>
12 <media id="final-ncl" src="final_document.ncl"/>
13 <link id="link" xconnector="conBase#onEndStart">
14 <bind role="onEnd" component="template-engine"/>
15 <bind role="start" component="final-ncl"/>
16 </link>
17 </body>
18 </ncl>� �

Listing 3.1: Configuration file used for template processing on the client-side
with NCL-formats embedded as a media object

3.3
Web-template Processing outside NCL document

This section discusses two other possible scenarios for running NCL-formats:
(1) as a standalone tool; (2) extending Ginga Player.

The standalone version enables developers to simulate their applica-
tion on their workstation, for instance, making easier to create and test new
template-based NCL applications. This scenario emphasizes that NCL-formats
is self-contained and might be perfectly executed outside the Ginga environ-
ment. It can run on both: server- and client-side.

Listing 3.2 demonstrates NCL-formats standalone version execution
through the command line. The Lua script receives three arguments: the
padding data; the template engine to be executed; and the template file it-
self. NCL-formats uses the template file name to generate the outputted NCL
document.� �

1 lua ncl-formats.lua padding.json template_engine=jinja2 template=
slideShow_child.ncl.j2

2 lua ncl-formats.lua padding.json template_engine=mustache template
=slideShow.ncl.mustache partial1.mustache partial2.mustache ...� �

Listing 3.2: Command line call to NCL-formats process Jinja2- and Mustache-
based template for slideshow

By extending Ginga Player, it will handle, besides NCL, other formats.
However, it will require modifications on Ginga specification that implies new
in Forum and ABNT (Associação Brasileira de Normas Tecnicas) discussion

DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



Chapter 3. NCL-formats tool 28

to release a new standard. Moreover, it takes time to current STB (set-top
box) and TV to implement such features.

Ginga has been extended to support templates syntax. Figure 3.2, shows
the proposed architecture. In this approach, the middleware receives any
template-based document e.g., Jinja2, Mustache. The Parser takes care of
checking document type and if it is a padding document it delivers both the
padding and the template to NCL-formats.

NCL-formats Lua script determines the appropriate engine to execute
and deliver the given data for template processing happens. As a result, NCL-
formats produces the final NCL document.

This done, Ginga’s Parser continues its natural workflow by passing the
NCL document to NCL player.

Figure 3.2: Extended Ginga Player architecture

To enable tempĺates processing in the Parser, a new option was added to
Ginga’s command line entry list. Such an option expects a template document
and only validates it if a padding document comes along. The Listing 3.3
illustrates its usage in the terminal.� �

1 ginga padding.json --template=slideShow_child.ncl.j2� �
Listing 3.3: PUC-Rio Ginga executing a Jinja2 template through command
line

3.4
Implementation Details

To work properly NCL-formats need to load some dependencies: JSON library,
Mustache and Jinja2 implementation.

The JSON library is necessary to deserialize JSON data from the padding
document. In other words, this library is responsible for decoding JSON data
and stores it in data type understandable by LUA language. It must be

DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



Chapter 3. NCL-formats tool 29

implemented in pure Lua, otherwise, Ginga is not able to execute it. The
developed examples in Chapter 4 use JSON Encode/Decode in Pure LUA2.

Mustache implements template inheritance through the concept of par-
tials. Partials came from embedded Ruby (eRuby) and are used in this sense to
refer to templates that cannot be rendered by themselves. Each partial must
correspond to a file.

Mustache Lua implementation is called Lustache3. It only handles tem-
plates as strings. So, in the scenario of a large Ginga application with n partials
implemented, NCL-formats should read these partials (files) one by one saving
them as strings. Only after this data type conversion, the engine becomes able
to process the template.

Jinja2’s implementation is Lupa. It allows templates to be loaded from
the same folder besides strings. When loading from folders, the developer only
passes one template. The engine deals with any other required template, as
long as they are in the same directory from the given one.

Jinja2 implements variables that give more control to the programmers,
such as {{ loop.index }} and {{ loop.length }} that counts the
number of loop iterations starting from one and gets back the size of an iterable,
respectively.

On Jinja2 it is also possible to set up variables. None of that Mustache
can do. In the case of more complex applications, to generate the same NCL
document, Mustache developers should:

– put extra information in the padding document;

– type it in NCL-formats.

The first option is not desirable since it would put not only semantic-
related data but logical as well in the padding document. Such behavior breaks
the concept of templates itself because of blends logical and semantics in one
single file. The second option, despite not breaking the rules, would require
developers to code extra data in NCL-formats to manage the necessary logic
to build the same template as in Jinja2. In other words, NCL-formats would be
responsible for handle more data that would change for each kind of template.

2http://regex.info/blog/lua/json
3https://github.com/Olivine-Labs/lustache

http://regex.info/blog/lua/json
https://github.com/Olivine-Labs/lustache
DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



4
Web Templates Evaluation

This chapter presents an evaluation of web-templates languages behavior
to built NCL applications. For that, it is necessary to discuss the evaluation
procedure, first.

The number of lines of code is adopted as a metric for measuring the
amount of work spent to produce an NCL application when using the chosen
web-template languages. To determine the application’s total gain, is used the
equation below that gives the total percentage score:

Score =
[
1 − number of [TemplateLanguage] lines of code

number of NCL lines of code

]
× 100% (4-1)

where:

TemplateLanguage = indicates the proper web-template language.

Measuring the number of lines required for coding is not fair enough.
Listing 4.1 illustrates that. It shows a snippet of code in Jinja2 responsible
for setting a Lua table called action_components. The typed code is
condensed to one single line.� �

1 {% set action_components = {set={media={’mNodeSettings’ .. suffix,
{bind_param={name=’setValue’, value=’left’}, interface=’
direction’}}, {’mNodeSettings’ .. suffix, {bind_param={name=’
setValue’, value=’3’}, interface=’service.currentFocus’}}} ,
stop={’ctx’ .. suffix}} %}� �

Listing 4.1: Barely readable code

Certainly, this single-line instruction does not represent how most pro-
grammers would code it, as it is not very readable by humans. To turn the code
more comprehensive, this line should be broken into many leading to a higher
number of lines and so influencing the metric adopted. Nonetheless, logic does
not changes in any aspect at all.

To demonstrate our point, Listing 4.2 shows the same code from Listing
4.1 in a way more likely to be typed by a developer (more human-readable).

DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



Chapter 4. Web Templates Evaluation 31

� �
1 {% set action_components =
2 {set=
3 {
4 media= {
5 ’mNodeSettings’ .. suffix, {
6 bind_param= {
7 name=’setValue’,
8 value=’left’
9 },

10 interface=’direction’
11 }
12 },
13 {
14 ’mNodeSettings’ .. suffix, {
15 bind_param={
16 name=’setValue’,
17 value=’3’
18 },
19 interface=’service.currentFocus’
20 }
21 }
22 },
23 stop=
24 {
25 ’ctx’ .. suffix
26 }
27 }
28 %}� �

Listing 4.2: More comprehensive code

So, taking that into account we also use the number of instructions
as a metric. To this end, Table 4.1 summarizes a set of instructions in NCL,
Jinja2 and Mustache languages and its use.

Language Delimiter Usage Scenario

NCL

<element attributes /> one-line instructions
<element attributes >

multiple lines instructionsinner elements
</elements>

Jinja2 {% ... %} statements
{{ ... }} expressions

Mustache

{ > name } partials
{{ ... }} variables

{{ #section name }}
sectionssection content

{{ /section name }}

Table 4.1: Types of instructions on each language

Therefore, for this second metric, the percentage score becomes:

DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



Chapter 4. Web Templates Evaluation 32

Score =
[
1 − number of [TemplateLanguage] instructions

number of NCL instructions

]
× 100% (4-2)

To due NCL syntax, developers should type many instructions to specify
their program and sometimes they do copying and pasting as a manner to
reduce typing and gain time. The amount of code typed or the copy and paste
process leads to errors in the final code that may pass unseen for developers
until the application is tested.

Another issue appears in more sophisticated NCL codes that require
more elaborated logic to develop. In such cases, due to their complexity, errors
may come out during the application’s developing stage. With templates, new
developers do not need to reinvent the wheel. It is enough to use the templates.

The use cases were chosen to simulate very common application types
and different transmission scenarios in DTV. In them, the NCL-formats was
used to collect the padding; the template; and the engine and generate the
NCL application.

Next sections discuss three use cases implemented: Section 4.1 delineates
the slideshow example developed in Mustache and Jinja2; Section 4.2 details
the additional content example that illustrates an application in a broadcast
context; and Section 4.3 set forth a video recommendation application for the
IBB (Integrated broadcast-broadband) scenario. Lastly, Section 4.4 discuss
results.

4.1
Slideshow

The slideshow is a kind of presentation that changes the content displayed
from time to time or after an action is triggered e.g., user presses a button to
go back and forth.

The developed slideshow instance was implemented considering two
cases, each one using a different web-template language. They consist of
twenty-one images that change every 5 seconds. The final NCL document
outputted i.e., the NCL application is the same for both.

Listing 4.3 shows a snippet of the padding document. It is a JSON
document containing the media elements used in the application and is
common for the two cases evaluated.

The slideshow example built with Jinja2 takes advantage of its
template inheritance capacity. In this instance, there are two tem-
plate documents: one called slideShow_base.ncl.j2 and the other
slideShow_child.ncl.j2.

DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



Chapter 4. Web Templates Evaluation 33

� �
1 [
2 {
3 "type":"directory",
4 "name":"media",
5 "contents":[
6 {"type":"file","name":"image1.jpg"},
7 {"type":"file","name":"image2.jpg"},
8 {"type":"file","name":"image3.jpg"},
9 ...

10 ]
11 }
12 ]� �

Listing 4.3: padding.json

SlideShow_base.ncl.j2 works as a base template in template
hierarchy and is an NCL-based code with block tags in Jinja2 syntax. A {%

block %} element indicates code replacement. So, in Listing 4.4 a {% block

medias %} stipulates another template to handle the block named medias.
The same happens for the block links ({% block links %}).� �

1 <?xml version="1.0" encoding="UTF-8"?>
2 <!-- An NCL SlideShow example with embedded Jinja2 template -->
3 <ncl id="slideShow">
4 <head>
5 <connectorBase>
6 <importBase documentURI="connectorBase.ncl" alias="

conBase"/>
7 </connectorBase>
8 <regionBase>
9 <region id="main" width="100%" height="100%" zIndex="1"/>

10 </regionBase>
11 <descriptorBase>
12 <descriptor id="ImageDes" region="main" explicitDur="5s

"/>
13 </descriptorBase>
14 </head>
15 <body>
16 <port id="startSlideShow" component="image1"/>
17 {% block medias %}{% endblock %}
18 {% block links %}{% endblock %}
19 </body>
20 </ncl>� �

Listing 4.4: slideShow_base.ncl.j2

Logical structure is held in slideShow_child.ncl.j2 (Listing
4.5) which is a child template. It establishes blocks behavior in its par-
ent template. Inheritance is made through {% extend %} statement on
slideShow_base.ncl.j2 file. Medias "block" mounts the name of each
media, gather its path and set them to id and src NCL attributes, respec-

DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



Chapter 4. Web Templates Evaluation 34

tively. Links block, builds a link passing media objects id formed in media
block.� �

1 {% extends "slideShow_base.ncl.j2" %}
2 {% block medias %}
3 {% for i in files_list[1].contents %}
4 <media id="{{’image’ .. loop.index}}" src="{{’media/’ .. i.

name}}" descriptor="ImageDes"/>
5 {% endfor %}
6 {% endblock %}
7 {% block links %}
8 {% for i in range(#files_list[1].contents-1) %}
9 <link id="{{’lMoveForward’ .. loop.index}}" xconnector="

conBase#onEndStart">
10 <bind role="onEnd" component="{{’image’ .. loop.index

}}"/>
11 <bind role="start" component="{{’image’ .. (loop.index+1)

}}"/>
12 </link>
13 {% endfor %}
14 {% endblock %}� �

Listing 4.5: slideShow_child.ncl.j2

Figure 4.1 shows a graphic comparing the number of lines needed
in the slideshow instance implemented with Jinja2 to the NCL code.
In overall 34 lines of code were written, 14 of them related to tem-
plate syntax (slideShow_child.ncl.j2) while the others are in NCL
(slideShow_base.ncl.j2). This code, when the final NCL document is
generated, expands to a total of 119 lines. That represents a score of 71,43%
according to Equation 4-1.

Figure 4.1: Number of lines coded per file employing Jinja2 as template
language

From the overall number of lines, one is for inheritance and two are
to delimiter the beginning and end of which block tag. Considering that

DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



Chapter 4. Web Templates Evaluation 35

inheritance is not strictly necessary and that everything could have been done
in only one file, we have 20 lines of code. In this case, Equation 4-2 enlarges
the score to 77,31%.

Measuring the number of instructions ends in similar results. How-
ever, the gains are a little higher. Figure 4.2 summarizes the amount
of instructions required on each Jinja2’s file compared to the generated
NCL code. 12 lines were typed in slideShow_base.ncl.j2 and nine in
slide_show.child.ncl to generate 91 lines in NCL.

This case results in a higher gain. Applying Equation 4-1 ends in a score of
76,92%. Without a hierarchy structure, the score goes to 82,42% as pointed
by Equation 4-2.

Figure 4.2: Number of instructions typed per file employing Jinja2 as template
language

Table 4.2 summaries the score achieved on each case considering the two
measured metric.

Metric
Case number of lines number of instructions

w/ hierarchy 69.75% 76.92%
w/o hierarchy 77.31% 82.42%

Table 4.2: Jinja2 slideshow score summary

As well as in the Jinja2 case, the slideshow implemented with Mustache
also explores inheritance. Mustache code inheritance is implemented through
partials, previously presented in Chapter 3, Section 3.4.

The slideshow proposed example was developed based on three files:

– slideShow.ncl.mustache: deals with NCL code that has not be-
come a template. It is the main file;

DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



Chapter 4. Web Templates Evaluation 36

– medias.mustache: builds the NCL media elements;

– links.mustache: creates each link.

Listing 4.6 presents the code in slideShow.ncl.mustache. It de-
clares the NCL code and calls two partials: {{<medias}} and {{<links}}.
Each partial corresponds to one inherited template file. The elements inside
the NCL head tag were removed as they are the same as in Jinja2 instance.� �

1 <ncl id="slideShow">
2 <head>
3 ...
4 </head>
5 <body>
6 <port id="startSlideShow" component="image1"/>
7 {{>medias}}
8 {{>links}}
9 </body>

10 </ncl>� �
Listing 4.6: slideShow.ncl.mustache

Listing 4.7 and Listing 4.8 next exhibits, respectively, the
medias.mustache and the link.mustache.� �

1 {{#contents}}
2 {{#index}}
3 <media id=’image{{index}}’ src=’media/{{name}}’ descriptor=’

ImageDes’/>
4 {{/index}}
5 {{/contents}}� �

Listing 4.7: medias.mustache

� �
1 {{#contents}}
2 {{#next}}
3 <link id=’lMoveForward{{index}}’ xconnector=’conBase#

onEndStart’>
4 <bind role=’onEnd’ component=’image{{index}}’/>
5 <bind role=’start’ component=’image{{next}}’/>
6 </link>
7 {{/next}}
8 {{/contents}}� �

Listing 4.8: links.mustache

Figure 4.3 summarizes the development with Mustache. In overall, 33
lines of code were typed: 20 in slideShow.ncl.mustache (main); five in
medias.mustache; and 8 in links.mustache. That leads to a score of
72.27%, according to Equation 4-1.

DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



Chapter 4. Web Templates Evaluation 37

Figure 4.3: Number of lines coded per file employing Mustache as template
language

This code implemented in one single file without hierarchy tags needs
31 lines. In this circumstance, the two removed lines are related to partials.
Therefore, the score increases a little to 73.95%, as Equation 4-1 indicates.

Taking into account the number of instructions the score with hierarchy
is 72.53%. In this case 12 instructions were typed in the main file; eight in the
links.mustache; and five medias.mustache. Figure 4.4 illustrates the results for
each file.

Figure 4.4: Number of instructions typed per file employing Mustache as
template language

The removal of hierarchy elements from the code increases the score to
74.73%, as stated by Equation 4-2. Table 4.3 summarizes the score obtained
with Mustache as template language for the two cases proposed.

Creating templates with Jinja2 or Mustache results in a large reduction
independently of the metric adopted. More than that, this reduction is pretty

DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



Chapter 4. Web Templates Evaluation 38

Metric
Case number of lines number of instructions

w/ hierarchy 72.27% 72.53%
w/o hierarchy 73.95% 74.73%

Table 4.3: Mustache slideshow score summary

much the same.
A curious fact can be observed comparing the two cases. Using inheri-

tance on both, the Jinja2 instance produced more lines in comparison to Mus-
tache. That is because each {% block %} tag in Jinja2 generates 3 lines/in-
structions (one to denote the block on the parent template and two to mark
its beginning and ending in the child template) plus one line for the extending
tag. On the other hand, Mustache just requires the partial to be processed.
Mustache separates one partial per file which eliminates the need for more
tags.

Regarding what was mentioned in the previous paragraph, there is a
drawback in the way Mustache works. For NCL applications that demand
more elaborated templates, the number of files grows equally to the number
of partials used in the template‘s logic. On Jinja2, a developer has free control
of how many {% blocks %} statements he/she puts on each module.

We opt to develop the next use cases only in Jinja2. We do that because
they are more elaborated applications and Mustache does not provide enough
features to ease development in it, such as if-statement or declaration of
variables. To code these on Mustache it would be necessary a different approach
more sophisticated compared to Jinja2. Therefore, we consider it would not be
worth to develop our templates in this language.

4.2
Broadcast Additional Content

Terrestrial Broadcast TV main characteristic is to deliver the same content to
everyone tuned in the same TV station. It enables the transmission of other
kinds of information in addition to the usual video and sound contents.

A very common application type in the Broadcast context is the addi-
tional content. In such applications, the user navigates among menus to gather
more information about the audiovisual content displayed on the TV screen.
For instance, an additional content for soup opera may show a character bi-
ography or a summary of the previous episodes; for a movie, an additional
content may exhibit information about directors and actors.

DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



Chapter 4. Web Templates Evaluation 39

Considering this scenario, we develop an additional content use case using
a Jinja2 template. This use case simulates a TV station broadcasting a movie.
To the viewer, it is possible to interact through a button. If the user chooses
to interact, a four-button menu is displayed and he/she can navigate using the
remote control.

Each button puts on view a different kind of data related to the movie in
the TV programming: the movie plot; the characters; details (extra info such
as budget, studio producer, release date, among others) and pictures. Figure
4.5 shows a screenshot from the application.

Figure 4.5: Additional content application screenshot

The padding document allows to each template author to specify some
images used in the application and the content displayed on each button. Its
data is as follow:

– video: the main video being played;

– begin: image to indicates that there is an application and the user can
interact with it;

– close: finishes application;

– reg: minimizes each button context;

– button: information related to each button:

– image: button image;
– title: text title related to the button;

DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



Chapter 4. Web Templates Evaluation 40

– info: first information window;
– infoPlus: second information window;
– background: image used as background;
– left: image indicating to return to the first window;
– right: image indicating that there is a second window.

Listing 4.9 shows the padding document. The Green, Yellow and Blue
buttons information were omitted for being similar to the Red button.� �

1 {
2 "video" : "video.mp4",
3 "begin" : "info.png",
4 "close" : "exit.png",
5 "reg" : "reg.png",
6 "buttons" : [
7 {
8 "name" : "Red",
9 "image" : "red.png",

10 "title" : "redTitle.txt",
11 "info" : "redInfo1.txt",
12 "infoPlus" : "redInfo2.txt",
13 "background" : "background.png",
14 "left" : "left.png",
15 "right" : "right.png"
16 },
17 {
18 ... // Green Button Data
19 },
20 {
21 ... // Yellow Button Data
22 },
23 {
24 ... // Blue Button Data
25 }
26 ]
27 }� �

Listing 4.9: Padding file used in the additional content use case

The template developed consists of three files. Starting from the same
approach used in the slideshow use case (Section 4.1), there are three files:

– additionalContent_base.ncl.j2: contains NCL head elements
and a set of block elements related to the application logic;

– additionalContent_child.ncl.j2: implements each block on its
parent.

The third file contains all the macros used to support the development.
The blocks in additionalContent_base.ncl.j2 are: one to begin

application and another to end it; three to initialize each button context, finish

DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



Chapter 4. Web Templates Evaluation 41

and minimize them; one to navigate to the second information window and
another to navigate back to the first window; one to return to the menu; and
four to handle each button content when its key is pressed.

The file additionalContent_child.ncl.j2 implements the afore-
mentioned blocks. Their code uses features presented in Jinja2 language syn-
tax. Macros and variables creation are some of them.

Macros are comparable to functions in imperative programming lan-
guages and they put often typed code in reused functions avoiding repetition.
A macro is defined as {% macro name (param1, param2, ...) %}.
They must have a name and accept arguments as optional parameters. They
might be called by simple typing {{ name(param1, param2, ...) }}.

Jinja2 also admits a macro to call another one. It is done through the
{% call %} statement which calls the specified macro, executes its code and
then returns to the same point it was invoked. After that, the code continues
its natural workflow. In this procedure, a macro can return values to its caller.

The Listing 4.10 shows the navigationRight block which is used to control
the behavior of the application when the right key is pressed and the first
information window is active. In this block, a link is set up for each button
through a call to a macro named nutshell at line 3.

The nutshell macro code is depicted in Listing 4.11. When reaching the
command {{ caller () }} at line 7, it returns the control to its caller.
navigationRight block then sets one table containing media elements that play
stop role and another to those that play start role. These tables are used to
another macro called setAction. At line 8 in Listing 4.10, the {% endblock

%} tag, signalizes the ending of the "call" block. This way, the control is given
back to the macro called that should also end its execution as well.� �

1 {% block navigationRight %}
2 {% for i in files_list.buttons %}
3 {%+ call nutshell("m".. key[loop.index] .. "Right" , "

CURSOR_RIGHT", "onKeySelectionStartNStopN", "onSelection") %}
4 {%- set stopMedias = {’m’ .. key[loop.index] .. ’Info’, ’m’

..key[loop.index] .. ’Right’} %}
5 {{- setAction(’stop’, stopMedias) }}
6 {% set startMedias = {’m’ .. key[loop.index] .. ’Info1’, ’m’

.. key[loop.index] .. ’Left’} %}
7 {{- setAction(’start’, startMedias) }}
8 {% endcall %}
9 {% endfor %}

10 {%- endblock %}� �
Listing 4.10: Example of macro invocation and call statement in additional
content use case

DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



Chapter 4. Web Templates Evaluation 42

� �
1 {% macro nutshell(component, link_param, connector, role) %}
2 <link xconnector="{{’conBase#’ .. connector}}">
3 <bind role="{{role}}" component="{{component}}"/>
4 {% if link_param ~= nil %}
5 <linkParam name="keyCode" value="{{link_param}}"/>
6 {% endif %}
7 {{ caller () }}
8 </link>
9 {% endmacro %}� �

Listing 4.11: Macro nutshell in additional content use case

Another feature from Jinja2 is variable creation. Variables are declared
and initialized in a set statement. Line 4 and 6 from Listing 4.10 show two
tables’ initialization.

The template documents in addition to the padding when processed
generate an NCL document that consists of medias elements and links that
react to the user’s interaction. Each button image and its title can occupy
two different positions: one when the button context is opened (red button on
Figure 4.5) and another when the button is closed or the application is in the
main menu (the others buttons on Figure 4.5). These buttons’ positions on the
screen are set through properties of each corresponding media element.

In the NCL document, Links are compounded by media elements that
assume play or stop NCL roles. They control events related to medias elements
that change states in the NCL state machine and therefore, the application’s
behavior.

Figure 4.6 demonstrates the number of lines used per file. In
additionalContent_base.ncl.j2 template document 153 lines were
coded, additionalContent_child.ncl.j2 required 249 lines and
macro.jinja2 15. These three documents sums 417 lines in total. After
being processed, these templates expand to almost 700 lines of pure NCL
code. That represents a score of 40.26% mesured by Equation 4-1.

Figure 4.7 displays similar results measuring the number of instruc-
tions, instead. From it is seen that a total of 606 instructions were gen-
erated in the NCL document. The template documents required a total
of 287 instructions: 111 in additionalContent_base.ncl.j2, 167 in
additionalContent_child.ncl.j2 and 9 for the macros. In this case,
the score is 52,64%.

Table 4.4 below summarizes results obtained with the developed tem-
plates. It considers the two metrics proposed and the code with and without
hierarchy elements.

DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



Chapter 4. Web Templates Evaluation 43

Figure 4.6: Number of lines coded per file employing Jinja2 as template
language

Figure 4.7: Number of instructions typed per file employing Jinja2 as template
language

Metric
Case number of lines number of instructions

w/ hierarchy 40.26% 52.64%
w/o hierarchy 44.84% 63.70%

Table 4.4: Additional content score summary

4.3
IBB Video Recommendation

Differently from Broadcast, Broadband uses internet access to delivery audio-
visual content. It became popular with the advent of smart TVs and video
streaming services, such as Youtube and Netflix. Viewers are more active since
it delivers a wide range of customized video streaming catalog in which they
can navigate through.

DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



Chapter 4. Web Templates Evaluation 44

The recently IBB (Integrated Broadcast-Broadband) scenario integrates
seamlessly both Broadcast and Broadband contexts. In other words, it enables
viewers to seamlessly navigate between contents from both scenarios. For
instance, a viewer in the Broadband environment can receive a suggestion
to watch a live Broadcast content related to what he/she is currently viewing.
Alternatively, a user in the Broadcast environment can receive a suggestion to
watch more content from Broadband sources related to what he/she is watching
at that moment.

The integration brought in the IBB scenario leads to increase users’ en-
gagement and to maximize their satisfaction by offering a range of new services.
Any IBB services should be able to extend the traditional Broadcasting using
any Broadband mechanism available to bring new interactive and complemen-
tary content to the end-user [16].

In IBB scenarios, the biggest advantage is to enable applications to
retrieve their content from servers. It occurs at application’s running time,
upon users’ interaction. With client-side processing, NCL applications become
able to respond to servers’ answers and change the content displayed. In that
way, it affords a wide range of information according to viewers’ interaction.

The rest of this section presents an NCL video recommendation example
for the IBB scenario developed using templates implemented in Jinja2.

The application shows a list of images related to the video on the screen.
To the viewer is possible to go back and forth over this list. A focus indicates
the currently selected image. If this user chooses one image from the list, the
presentation of the current image ceases and the corresponding video starts to
play. Figure 4.8 shows a screenshot taken from the application.

Figure 4.8: Video recommendation application screenshot

The developed template allows its author to specify the application’s
main video and recommended videos and images. Thus, the padding document

DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



Chapter 4. Web Templates Evaluation 45

states as depicted in the Listing 4.12. In this case, the application advises five
videos to its users.� �

1 {
2 "primary" : "mainVideo.mp4",
3 "secondary": [
4 "video1.mp4", "video2.mp4", "video3.mp4", "video4.mp4", "

video5.mp4"
5 ],
6 "images": [
7 "image1.jpg", "image2.jpg", "image3.jpg", "image4.jpg", "

image5.jpg"
8 ]
9 }� �

Listing 4.12: Padding file used in the video recommendation use case

The template documents use the same Jinja2 features pre-
sented in Section 4.2 and are also split in the same structure:
videoRecommendation_base.ncl.j2 to load Jinja2 blocks and NCL
code not required in the videoRecommendation_child.ncl.j2 that
holds the template logic. There is a macro file to help in the development.

In videoRecommendation_base.ncl.j2 there are only two blocks:
one to handle NCL contexts and the other to manager link elements that
control these context presentation.

The NCL code resulted from the template processing, consists of NCL
contexts and uses links to manager changes between such contexts. The
intention behind it is to develop a carousel of videos. The figure 4.9 illustrates
such idea.

Figure 4.9: Video recommendation logic built through NCL contexts

Inside contexts, there are ambient variables used to control the applica-
tion’s logic. They are properties of Ginga’s media object application/x-ginga-
settings.

DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



Chapter 4. Web Templates Evaluation 46

Below, we describe them:

– service.currentFocus: indicates the value of focusIndex element. It is an
integer value;

– selected: indicates that a video from the recommendation list was se-
lected. It is a binary value;

– direction: indicates users’ navigation direction. Assumes the value of
"left" or "right".

Each context has three ports. One for each video recommendation
position: left, center and right. If any of these videos is chosen, the selected
variable is set to true and a switch handles the chosen video according to the
application’s rule defined in the NCL ruleBase tag. These rules checks if the
value of service.currentFocus is equal to 1, 2 or 3. In case of no video selection,
selected variable remains false.

Links inside NCL contexts tests, for instance, if the user pressed the
RIGHT_CURSOR key and if the service.currentFocus from the image is
equal to 3, then, direction variable is set to right and the current context
is ceased. Similarly, the same occurs when a user navigates to the left to go
back to the previous videos list.

At the end of an NCL context execution, links outside them test the
aforementioned ambient variables. If selected is true it means that a video
from the context was chosen and any other context should not be initialized.
Therefore, the application starts the chosen video and ends its execution.
Otherwise, it is necessary to start the previous or the next context according
to the user navigation direction. Variable direction value is tested to determine
which context should start in this case.

The first and the last context are special cases because they require only
one context initialization. Respectively, next and previous contexts.

Figure 4.10 and 4.11 shows the results for the developed Broadband
instance considering, respectively, for the number of lines of code and the
number of instructions.

When measuring the number of lines of code, 52 lines
were written in videoRecommendation_base.ncl.j2, 121 in
videoRecommendation_child.ncl.j2 and 33 for the macros to
generate 268 NCL lines. That lead to a score of 23.13%. Employ-
ing the number of instructions the following results were achieved:
34 instructions in videoRecommendation_base.ncl.j2, 82
videoRecommendation_child.ncl.j2 and 20 in the macros docu-

DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



Chapter 4. Web Templates Evaluation 47

ment. In this case, 192 NCL instructions were generated and the score is
29.17%.

Figure 4.10: Number of lines coded per file employing Jinja2 as template
language

Figure 4.11: Number of instructions typed per file employing Jinja2 as template
language

Table 4.5 presents the results for the video recommendation developed
using templates in Jinja2. As in the previous scenarios, it considers the
development with and without template hierarchy elements and for these two
measures the score variable values according to the number of lines and the
number of instructions.

DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



Chapter 4. Web Templates Evaluation 48

Metric
Case number of lines number of instructions

w/ hierarchy 23.13% 29.17%
w/o hierarchy 26.12% 35.94%

Table 4.5: Video recommendation score summary

4.4
Discussion

This section debates about templates implementation using Jinja2 and Mus-
tache. In this discussion, some features provided by these two languages, espe-
cially those concerning template inheritance and control structures, are exam-
ined. We also review the facility to program templates in them. At last, some
remarks regarding the results are leverage.

Jinja2 and Mustache are very unlike in their syntax, especially for tem-
plate inheritance and control structures, two of the specified requirements.
Template inheritance affects directly the evaluation procedure and was dis-
cussed in Section 4.1. Regarding control structures, it is only possible to com-
pare iterations, since Mustache only implements it.

The two template languages loop over collections in two different ways.
Jinja2 uses the {% for ... %} statement to iterate, meanwhile Mustache
renders special tags called “sections”. Listing 4.13 and Listing 4.14 show
snippets of code from Jinja2 and Mustache languages, respectively.

The syntax proposed in Jinja2 is very intuitive and similar to imperative
programming languages such as Lua and Python and therefore becomes easier
for developers to understand. The same does not occur in Mustache. It is
necessary to know its syntax first and the context to understand code behavior.� �

1 {% for i in files_list[1].contents %}
2 <media id="{{’image’ .. loop.index}}" src="{{’media/’ .. i.name

}}" descriptor="ImageDes"/>
3 {% endfor %}� �

Listing 4.13: Iteration in Jinja2

� �
1 {{#index}}
2 <media id=’image{{index}}’ src=’media/{{name}}’ descriptor=’

ImageDes’/>
3 {{/index}}� �

Listing 4.14: Iteration in Mustache

DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



Chapter 4. Web Templates Evaluation 49

Regarding template hierarchy, Mustache implementation only allows
inheriting from the main file. However, in Jinja2 any template can inherit
from others. Another difference between them is related to their engine
implementation. Mustache’s engine requires all templates to be explicitly given
to it, otherwise, it cannot process data. Jinja2’s engine can find and load
templates as long as they are in a specified folder. That way, only the main
template can be passed and the engine takes care of loading the others.

As stated in the slideshow example in Section 4.1, developing using
Mustache language becomes more difficult in more elaborated applications
due to its logic-less syntax. For instance, in the video recommendation, it is
necessary to make a difference for the first and last NCL contexts, as well as
set variables to build the links that control the application’s logic. Mustache
does not implement "if" statements or any similar feature to declare and handle
variables.

Developing these applications using Mustache, requires developers to
implement a completely distinct logic compared to the one employed in Jinja2-
based templates. Particularly, the NCL document outputted after template
processing is different. Comparing these two distinct logic would not be fair.

Therefore, we had two alternatives:

– develop with a similar approach on both languages and compare one to
another, but without exploring all the power that Jinja2 offer;

– use more features from Jinja2 and not compare it against Mustache.

We opt for the second and did not implement applications built with
Mustache for the last two use cases.

The developed applications use the following Jinja2 features: template
inheritance; blocks; macros; calls to macros; iterators and its control variables;
conditionals; variable creation and manipulation; arithmetic and Lua code,
such as functions to manipulate tables (range, pairs, ipairs, table.insert), Lua
length (#) and concatenation (..) operators.

Based on the three use cases developed it is possible to assure that web-
template processing reduces the amount of typed code, as it was expected.

From Equation 4-1 and 4-2 it is seen that the score increases when one
of these two happens:

– the number of instructions/lines goes down;
– the number of lines/instructions in the NCL code goes up.

Once this last is fixed for an application, so the fraction numerator must
change. And this is what happens when hierarchy elements are removed from
the code.

DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



Chapter 4. Web Templates Evaluation 50

Also, the two equations demonstrate that the higher the number of
instances the higher the score is. That explains the high gain acquired in
the slideshow in which we use 21 images against the 5 videos from the video
recommendation. The additional content has its instances quantity fixed (4)
which implies in a fixed score as well.

Jinja2 needs exactly 3 instructions for each inherit information plus one
to indicate the inheritance itself. Also, each of these instructions takes the
same amount of lines. Therefore, the removal of hierarchy elements results in a
larger gain independently from the metric adopted. A high gain in the number
of instructions in comparison to the number of lines can be explained by
instructions that take more than one line of code.

DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



5
Final Remarks

NCL is a declarative language based on XML. As a consequence, it is
verbose which may lead to errors, especially in large documents. With that in
mind, many studies have been conducted. Once NCL has many code repetition,
one approach is to reuse duplicated elements. One common reuse concept in
multimedia documents are templates. They generate a family of documents
based on the same common structure. More than easing the work of NCL
applications’ authors, templates reduce errors and make easy to identify them
if any happens.

Given this context, we proposed to answer two research questions intro-
duced in Chapter 1.

First, we asked RQ-1 How can we improve NCL development based on
templates? We try to answer it by arguing that the usage of web templates in
the development of NCL applications is an option to reduce typing errors. To
address this question, we define the objective of Evaluate web templates
usage in NCL development.

In Chapter 4, we developed three use cases: (a) slideshow; (b) broadcast
additional content and (c) IBB video recommendation. More precisely, we
discussed how the use of Jinja2 and Mustache template languages can support
the development of NCL applications. These examples confirmed that web
templates can reduce code-writing, independently if the metric used is the
number of lines or the number of instructions in the document.

Jinja2 template-based applications avoid code repetition and are less
error-prone. Nonetheless, differently from some related works, it did not make
it easier. To its authors, it still requires a certain expertise in programming.
It is a tough task to generate the final NCL document properly indented with
Jinja2. The outputted NCL document is still correct, nonetheless, it becomes
less readable and not ease developers task during coding.

In Chapter 4, Section 4.4 we mentioned all Jinja2 features used in
our examples. Except for arithmetic, all of them were widely used. Some of
them like iterators, conditions, variables manipulation, and the Lua embedded
code are indispensable, while others such as template inheritance and macros
creation and invocation are used to support the development making it more

DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



Chapter 5. Final Remarks 52

organized, cleaner and less repetitive.
Despite targeting web development, we were not sure if web engines may

be easily applied to develop DTV applications. For instance, on the web, some
of these engines run on the server-side, while others run on the client-side only
and some can execute on both.

Therefore, we also asked RQ-2 How can we support web templates
processing in the NCL development? To address this question, we define the
objective of Allow web template engines processing at Ginga.

To fulfill such an objective, we developed the NCL-formats tool. It aims
at assisting the development of NCL applications based on web-template
languages. As discussed in Chapter 3, it can be executed as a standalone tool.
We also suppose two possibilities for executing it on the client-side.

The first possibility consists of extending Ginga’s parser to support
templates syntax. It was extended to also handle template documents in
Jinja2 or Mustache languages. In this context, the Parser receives the template
documents and the padding document. With that, the NCL-formats tool is
called to process the given data and generate an NCL document ready to be
played by the NCL player. As pointed out in Section 3.3, this way implies
modifying Ginga’s standard which takes time to be approved and adopted.

Having in mind the drawbacks of the aforementioned proposal, another
approach was envisaged. This solution consists of embedding NCL-format as
an NCLua script. This way, an NCL Player receives a simple NCL document.
The NCL-formats becomes a media element of this NCL and the required
information (padding document, template document, and the engine) is passed
as a property of this media element. The NCLua script gathers the passed
data and calls the required web template engine. The engine fills out gaps on
template document with information from padding to generate the final NCL
document. After processing, the NCLua script signalizes its ending and the
NCL final document is played.

A version of NCL-formats was packed in a rock1 using LuaRocks package
manager.

Reviewing Table 2.1 from Section 2.3, this work uses control structures
and template inheritance, however, does not support template components as
it was intended. Particularly, it focuses on web developers but does not exclude
NCL developers, once its aim at generating applications in NCL. The biggest
advantage brought in our proposal is: template-based applications in NCL are
not tied to be prepossessed. They can be dynamic and adjustable at exhibition
time.

1https://luarocks.org/modules/bxl/ncl-formats

DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



Chapter 5. Final Remarks 53

5.1
Limitations and Future Work

This work has limitations in both the web template evaluation and the NCL-
formats tool.

Our evaluation focused only on web-template languages’ impact on the
code itself. We did not concern the programmers. So as a suggestion for future
works, we consider measuring the impact of our work targeting its developers.
In particular, we may measure the coding time.

Regarding the NCL-formats tool, it was tested against Jinja2 and Mus-
tache template engines. However, it may be applied to process template docu-
ments in any language. Therefore, future works may enlarge it by supporting
other template languages. For instance, NCL templates engines such as XTem-
plate2, sNCL3, TAL4, LuaTPL5, Lua2NCL and Luar6. Moreover, we can also
extend it to include as well other NCL formats, such as jNCL7, NCL-ltab8 and
RAW NCL9.

In this work we do not explore scenarios in witch the template engine acts
as a media. It can be used to create new types of media players. For instance,
to create templates that receive a SRC file as a pading document to render
subtitles.

Templates usage brings the possibility of processing data to generate NCL
applications. With that, the template’s engine accepts padding documents with
rules in them. Therefore, the engine is responsible for recognizing different kind
of input formats, understand its rules and process them.

5.2
Publications

This work was approved to the “VIII Iberoamerican Conference on Applica-
tions and Usability of Interactive TV (jAUTI 2019)”10.

2https://github.com/joeldossantos/aXT
3https://github.com/lucastercas/sncl
4https://github.com/TeleMidia/tal-processor
5https://github.com/robertogerson/luatpl
6https://code.google.com/archive/p/luar-template-engine
7http://www.midiacom.uff.br/~caleb/jns/
8http://www.telemidia.puc-rio.br/files/biblio/2018_09_dodsworth.

pdf
9http://github.com/TeleMidia/dietncl

10https://webmedia.org.br/2019/en/viii-iberoamerican-conference-
on-applications-and-usability-of-interactive-tv-jauti2019/

https://github.com/joeldossantos/aXT
https://github.com/lucastercas/sncl
https://github.com/TeleMidia/tal-processor
https://github.com/robertogerson/luatpl
https://code.google.com/archive/p/luar-template-engine
http://www.midiacom.uff.br/~caleb/jns/
http://www.telemidia.puc-rio.br/files/biblio/2018_09_dodsworth.pdf
http://www.telemidia.puc-rio.br/files/biblio/2018_09_dodsworth.pdf
http://github.com/TeleMidia/dietncl
https://webmedia.org.br/2019/en/viii-iberoamerican-conference-on-applications-and-usability-of-interactive-tv-jauti2019/
https://webmedia.org.br/2019/en/viii-iberoamerican-conference-on-applications-and-usability-of-interactive-tv-jauti2019/
DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



Bibliography

[1] C. Montez and V. Becker, TV digital interativa: conceitos, desafios e per-
spectivas para o Brasil, 2nd ed. Florianópolis: Ed. da UFSC, 2005.

[2] ABNT 15606-2, Digital Terrestrial TV — Data Coding and Transmission
Specification for Digital Broadcasting — Part 2: Ginga-NCL for Fixed and
Mobile Receivers: XML Application Language for Application Coding. São
Paulo: ABNT, 2007.

[3] L. F. G. Soares and S. D. J. Barbosa, Programando em NCL 3.0 2a. Edição
Versão 2.1, 1st ed. Elsevier Campos, May 2011.

[4] ITU-T Recommendation H.761, Nested Context Language (NCL) and Ginga-
NCL. Geneva: ITU-T, November 2014.

[5] C. de Salles Soares Neto, C. S. de Souza, and L. F. G. Soares,
“Linguagens Computacionais Como Interfaces: Um Estudo Com Nested
Context Language,” in Proceedings of the VIII Brazilian Symposium on
Human Factors in Computing Systems, ser. IHC ’08. Porto Alegre, Brazil,
Brazil: Sociedade Brasileira de Computação, 2008, pp. 166–175. [Online].
Available: http://dl.acm.org/citation.cfm?id=1497470.1497489

[6] E. C. O. Silva, J. A. F. d. Santos, and D. C. Muchaluat-Saade, “JNS: An
alternative authoring language for specifying NCL multimedia documents,”
in 2013 IEEE International Conference on Multimedia and Expo Workshops
(ICMEW), July 2013, pp. 1–6.

[7] E. International, “The json data interchange syntax,” December 2017.
[Online]. Available: http://www.ecma-international.org/publications/files/
ECMA-ST/ECMA-404.pdf

[8] R. G. de Albuquerque Azevedo, “LuaTPL: A simple lua-based template
engine,” 2018. [Online]. Available: https://github.com/robertogerson/luatpl

[9] D. H. D. Bezerra, D. M. T. Sousa, G. L. d. S. Filho, A. M. F. Burlamaqui, and
I. R. M. Silva, “Luar: A language for agile development of ncl templates and
documents,” in Proceedings of the 18th Brazilian Symposium on Multimedia

http://dl.acm.org/citation.cfm?id=1497470.1497489
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://github.com/robertogerson/luatpl
DBD
PUC-Rio - Certificação Digital Nº 1612822/CA



Bibliography 55

and the Web, ser. WebMedia ’12. New York, NY, USA: ACM, 2012, pp.
395–402. [Online]. Available: http://doi.acm.org/10.1145/2382636.2382718

[10] D. d. S. Moraes, A. L. d. B. Damasceno, A. J. G. Busson, and C. d. S.
Soares Neto, “Lua2NCL: Framework for Textual Authoring of NCL Applica-
tions using Lua,” in Proceeding of 22nd Brazilian Symp. Multimedia and the
Web. ACM, 2016.

[11] L. de Macedo Terças, D. de Sousa Moraes, T. de Sousa Lima, M. C. M.
Neto, and C. de Salles Soares Neto, “Introducing different levels of reuse
to a hypermedia authoring language with macros and templates,” in
Proceedings of the 24th Brazilian Symposium on Multimedia and the Web,
ser. WebMedia ’18. New York, NY, USA: ACM, 2018, pp. 117–124.
[Online]. Available: http://doi.acm.org/10.1145/3243082.3243117

[12] J. A. F. dos Santos and D. C. M. Saade, “Xtemplate 3.0: Adding semantics
to hypermedia compositions and providing document structure reuse,” in
Proceedings of the 2010 ACM Symposium on Applied Computing, ser. SAC
’10. New York, NY, USA: ACM, 2010, pp. 1892–1897. [Online]. Available:
http://doi.acm.org/10.1145/1774088.1774490

[13] C. d. S. Soares Neto, L. F. G. Soares, and C. S. de Souza,
“Tal—template authoring language,” Journal of the Brazilian Computer
Society, vol. 18, no. 3, pp. 185–199, Sep 2012. [Online]. Available:
https://doi.org/10.1007/s13173-012-0073-7

[14] W3C, “XSL Transformations (XSLT) Version 1.0,” 1999, 00020. [Online].
Available: http://www.w3.org/TR/xslt

[15] C. S. Soares Neto, H. F. Pinto, and L. F. G. Soares, “Tal
processor for hypermedia applications,” in Proceedings of the 2012
ACM Symposium on Document Engineering, ser. DocEng ’12.
New York, NY, USA: ACM, 2012, pp. 69–78. [Online]. Available:
http://doi.acm.org/10.1145/2361354.2361369

[16] ITU, “Integrated broadcast-broadband systems,” ITU, Geneva, Tech. Rep.
ITU-R BT.2267-6, October 2016. [Online]. Available: https://www.itu.int/
dms_pub/itu-r/opb/rep/R-REP-BT.2267-6-2016-PDF-E.pdf

http://doi.acm.org/10.1145/2382636.2382718
http://doi.acm.org/10.1145/3243082.3243117
http://doi.acm.org/10.1145/1774088.1774490
https://doi.org/10.1007/s13173-012-0073-7
http://www.w3.org/TR/xslt
http://doi.acm.org/10.1145/2361354.2361369
https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-BT.2267-6-2016-PDF-E.pdf
https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-BT.2267-6-2016-PDF-E.pdf
DBD
PUC-Rio - Certificação Digital Nº 1612822/CA


	Web Templates Support in NCL Player
	Resumo
	Table of Contents
	Introduction
	Templates
	Problem Definition
	Objectives
	Organization

	Related Work
	HTML Templates
	NCL Templates
	Discussion

	NCL-formats tool
	Supported Web Template Languages
	Web-Template Processing Embedded in an NCL Document
	Web-template Processing outside NCL document
	Implementation Details

	Web Templates Evaluation
	Slideshow
	Broadcast Additional Content
	IBB Video Recommendation
	Discussion

	Final Remarks
	Limitations and Future Work
	Publications




